

History and partnership construct

- → Injection technology developed for 25+ years at Equinor operated Sleipner field
- → From 2000: Several attempts to start CCS
- → 2016: The idea of a full value chain CCS project in Norway was born the government played an active role
- → 2017: The formal co-operation with Equinor, Shell and TotalEnergies commenced
- → 2020: The Longship project was launched
- → 2021: Northern Lights JV DA established
 - NL JV is a Shared Liability (DA) company owned by 1/3 each by Equinor, Shell and TotalEnergies.
 - Northern Lights JV DA operator of Norway's first CO2 injection license (Aurora)

Longship

- → Northern Lights was born from the Norwegian State's Longship project
- → A demonstration of large-scale, end-to-end CCS value chain consisting of:
 - Cement manufacturing plant
 - Waste-to-energy facility
 - Northern Lights CO2 transportation and storage
- → Enabled by grants through a State Support Agreement
- → Longship has co-financed Northern Lights Phase 1 with a capacity of 1.5 million tons of CO2 per year
- State participation critical to de-risk initial investment and operation period

Phased development

→ Northern Lights Phase 1

- 1.5 MTPA capacity, ready for start-up 2024
- 3 ships á 7,500m3 and 2 wells (one back-up)
- Phase 2 pre-investment in civil works and oversized pipeline
- Combination of commercial volumes and Longship volumes

→ Northern Lights expansion (Phase 2): commercial development

"Filling the pipeline": 5-7 MTPA

 Additional ships, storage tanks, increased pump capacity and associated utilities, more offshore wells, new jetty

→ Growth

- Additional pore space
- Concept not yet determined
- Storage licenses actively pursued by several players

Ships

- → World's largest custom liquified CO2 ships
- →Cargo size: 7,500 m3 (265,000 ft3)
- →Length: 130m (427 ft)
 - Medium pressure cargo containment
- →App. 15 barg (217 psi) and -26oC (15oF)
- →Purpose-built pressurised cargo tanks
- → Primary fuel: LNG
- →Wind assisted propulsion system and air lubrication will reduce carbon intensity by around 34% compared to conventional systems

Ship development

→ Status

- First two liquified CO2 ships under construction at Dalian shipyard in China
- Construction more than 85% complete
- Ships on schedule to be delivered in 2024
- Third sister ship ordered from DSOC in August 2023 for delivery second half 2025
- Fourth ship ordered in December 2024 again from DSOC

→ Observations

- Shipping market is tight given high demand for LNG vessels
- Increasing cost
- Long lead-times
- → Q: How can CCS "compete" in a heated oil and gas market?

Commercial contracts

Storage site

Receiving terminal

Ørsted Kalundborg Hub

Ørsted

- → Bioenergy plants in Denmark
- ightarrow 430.000 tonnes CO2 annually

Yara

- → Ammonia and fertiliser plant in the Netherlands
- → 800.000 tonnes CO2 annually

Challenges

Market Dynamics and Inflation

- Heated market with inflation and rising costs
- Yet, momentum for CCS has never been greater

Regulatory and Political Hurdles

Bilateral agreements – London Protocol

Investment Uncertainty

- Financial security and predictability crucial for investments
- Long-term contracts and clear regulatory signals

Timing

Time of essence for CCS to be a viable tool for climate mitigation

